Redundancy COMMUNICATION NETWORK. NOISE CHARACTERISTICS OF A CHANNEL

Communication Network

- Consider a source of communication with a given alphabet. The source is linked to the receiver via a channel.
- The system may be described by a joint probability matrix: by giving the probability of the joint occurrence of two symbols, one at the input and another at the output.

Communication Network

- x_k a symbol, which was sent; y_j a symbol, which was received
- The joint probability matrix:

Communication Network: Probability Schemes

- There are following five probability schemes of interest in a product space of the random variables X and Y:
- $[P{X,Y}]$ joint probability matrix
- $[P{X}]$ marginal probability matrix of X
- $[P\{Y\}]$ marginal probability matrix of Y
- $[P\{X|Y\}]$ conditional probability matrix of X|Y
- $[P\{Y|X\}]$ conditional probability matrix of Y|X

Communication Network: Entropies

- There is the following interpretation of the five entropies corresponding to the mentioned five probability schemes:
- H(X,Y) average information per pairs of transmitted and received characters (the entropy of the system as a whole);
- H(X) average information per character of the source (the entropy of the source)
- H(Y) average information per character at the destination (the entropy at the receiver)
- H(Y|X) a specific character x_k being transmitted and one of the permissible y_j may be received (a measure of information about the receiver, where it is known what was transmitted)
- H(X|Y) a specific character y_j being received; this may be a result of transmission of one of the x_k with a given probability (a measure of information about the source, where it is known what was received)

Communication Network: Entropies' Meaning

- H(X) and H(Y) give indications of the probabilistic nature of the transmitter and receiver, respectively.
- H(X,Y) gives the probabilistic nature of the communication channel as a whole (the entropy of the union of X and Y).
- H(Y|X) gives an indication of the noise (errors) in the channel
- H(X/Y) gives a measure of equivocation (how well one can recover the input content from the output)

- In general, the joint probability matrix is not given for the communication system.
- It is customary to specify the noise characteristics of a channel and the source alphabet probabilities.
- From these data the joint and the output probability matrices can be derived.

 Let us suppose that we have derived the joint probability matrix:

• In other words:

$$\lceil P\{X,Y\} \rceil = \lceil P\{X\} \rceil \lceil P\{Y \mid X\} \rceil$$

• where:

• If $[P\{X\}]$ is not diagonal, but a row matrix (n-dimensional vector) then

$$[P{Y}] = [P{X}][P{Y | X}]$$

 where [P{Y}] is also a row matrix (m-dimensional vector) designating the probabilities of the output alphabet.

- Two discrete channels of our particular interest:
- Discrete noise-free channel (an ideal channel)
- Discrete channel with independent inputoutput (errors in the channel occur, thus noise is presented)

 In such channels, every letter of the input alphabet is in a one-to-one correspondence with a letter of the output alphabet. Hence the joint probability matrix is of diagonal form:

form: $[P\{X,Y\}] = \begin{pmatrix} p\{x_1, y_1\} & 0 & 0 & \dots & 0 \\ 0 & p\{x_2, y_2\} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & p\{x_{n-1}, y_{n-1}\} & 0 \\ 0 & 0 & \dots & 0 & p\{x_n, y_n\} \end{pmatrix};$

• The channel probability matrix is also of diagonal form:

Talagonal form:
$$\begin{bmatrix} P\{X \mid Y\} \end{bmatrix} = \begin{bmatrix} P\{Y \mid X\} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix};$$

Hence the entropies

$$H(Y \mid X) = H(X \mid Y) = 0$$

The entropies H(X,Y), H(X), and H(Y):

$$H(X,Y) = H(X) = H(Y) =$$

$$= -\sum_{i=1}^{n} p\{x_i, y_i\} \log p\{x_i, y_i\}$$

- Each transmitted symbol is in a one-to-one correspondence with one, and only one, received symbol.
- The entropy at the receiving end is exactly the same as at the sending end.
- The individual conditional entropies are all equal to zero because any received symbol is completely determined by the transmitted symbol and vise versa.

Discrete Channel with Independent Input-Output

• In this channel, there is no correlation between input and output symbols: any transmitted symbol x_i can be received as any symbol y_j of the receiving alphabet with equal probability:

$$[P\{X,Y\}] = \begin{pmatrix} p_1 & p_1 & \dots & p_1 \\ p_2 & p_2 & \dots & p_2 \\ \dots & \dots & \dots \\ p_m & p_m & \dots & p_m \end{pmatrix}; \sum_{i=1}^m p_i = \frac{1}{n} = p\{y_j\}; p\{x_i\} = np_i$$

$$p_i \text{ identical columns}$$

Discrete Channel with Independent Input-Output

 Since the input and output symbol probabilities are statistically independent, then

$$p\left\{x_{i}, y_{j}\right\} = \underbrace{p\left\{x_{i}\right\}}_{np_{i}} \underbrace{p\left\{y_{j}\right\}}_{1/n} = np_{i} \frac{1}{n} = p_{i}$$

$$p\left\{x_{i} \mid y_{j}\right\} = p_{1}\left\{x_{i}\right\} = np_{i}$$

$$p\left\{y_{j} \mid x_{i}\right\} = p_{1}\left\{y_{j}\right\} = \frac{1}{n}$$

Discrete Channel with Independent Input-Output $H(X,Y) = -n\left(\sum_{i=1}^{m} p_i \log p_i\right)$

$$H(X,Y) = -n\left(\sum_{i=1}^{m} p_i \log p_i\right)$$

$$H(X) = -\sum_{i=1}^{m} np_i \log np_i = -n \left(\sum_{i=1}^{m} p_i \log p_i\right) - \log n$$

$$H(Y) = -n\left(\frac{1}{n}\right)\log\frac{1}{n} = \log n$$

$$H(X|Y) = -\sum_{i=1}^{n} np_i \log np_i = H(X); H(Y|X) = -\sum_{i=1}^{m} np_i \log \frac{1}{n} = \log n = H(Y)$$

 The last two equations show that this channel conveys no information: a symbol that is received does not depend on a symbol that was sent

Noise-Free Channel vs Channel with Independent Input-Output

- Noise-free channel is a loss-less channel, but it carries no information.
- Channel with independent input/output is a completely lossy channel, but the information transmitted over it is a pure noise.
- Thus these two channels are two "extreme" channels. In the real world, real communication channels are in the middle, between these two channels.

Basic Relationships among Different Entropies in a Two-Port Communication Channel

We have to take into account that

$$p\{x_{k}, y_{k}\} = p\{x_{k} \mid y_{j}\} p\{y_{j}\} = p\{y_{j} \mid x_{k}\} p\{x_{k}\}$$

$$\log p\{x_{k}, y_{k}\} = \log p\{x_{k} \mid y_{j}\} p\{y_{j}\} = \log p\{y_{j} \mid x_{k}\} p\{x_{k}\}$$

$$\log p\{x_{k} \mid y_{j}\} + \log p\{y_{j}\}$$

$$\log p\{y_{j} \mid x_{k}\} + \log p\{x_{k}\}$$

Hence

$$H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)$$

Basic Relationships among Different Entropies in a

Two-Port Communication Channel

Fundamental Shannon's inequalities:

$$H(X) \ge H(Y|X) \quad H(Y) \ge H(Y|X)$$

- The conditional entropies never exceed the marginal ones.
- The equality sigh hold if, and only if X and Y are statistically independent and therefore

$$\frac{p\{x_k\}}{p\{x_k \mid y_j\}} = \frac{p\{y_j\}}{p\{y_j \mid x_k\}} = 1$$

• What is a mutual information between x_i , which was transmitted and y_j , which was received, that is, the information conveyed by a pair of symbols (x_i, y_i) ?

$$I(x_i; y_j) = \log \frac{\overbrace{p\{x_i, y_j\}}^{p\{y_j\}}}{p\{x_i \mid y_j\}} = \log \frac{p\{x_i, y_j\}}{p\{x_i\}}$$

 This probability determines the a posteriori knowledge of what was transmitted

$$I(x_i; y_j) = \log \frac{p\{x_i | y_j\}}{p\{x_i\}}$$

- This probability determines the a priori knowledge of what was transmitted
- The ratio of these two probabilities (more exactly

 its logarithm) determines the gain of
 information

Mutual and Self-Information

- The function $I(x_i, x_i)$ is the self-information of a symbol x_i (it shows a priori knowledge that x_i was transmitted with the probability $p(x_i)$ and a posteriori knowledge is that x_i has definitely been transmitted).
- The function $I(y_j, y_j)$ is the self-information of a symbol y_i (it shows a priori knowledge that y_i was received with the probability $p(y_i)$ and a posteriori knowledge is that y_i has definitely been received).

Mutual and Self-Information

For the self-information:

$$I(x_i) = I(x_i, x_i) = \log \frac{p\{x_i \mid x_i\}}{p\{x_i\}} = \log \frac{1}{p\{x_i\}}$$

 The mutual information does not exceed the self-information:

$$I(x_i; y_j) \le I(x_i; x_i) = I(x_i)$$
$$I(x_i; y_j) \le I(y_j; y_j) = I(y_j)$$

 The mutual information of all the pairs of symbols can be obtained by averaging the mutual information per symbol pairs:

$$I(X;Y) = \overline{I(x_i, y_j)} = \sum_{j} \sum_{i} p\{x_i, y_j\} I(x_i, y_j) =$$

$$= \sum_{j} \sum_{i} p\{x_i, y_j\} \log \frac{p\{x_i \mid y_j\}}{p\{x_i\}} =$$

$$= \sum_{j} \sum_{i} p\{x_i, y_j\} \left(\log p\{x_i \mid y_j\} - \log p\{x_i\}\right)$$

- The mutual information of all the pairs of symbols *I(X;Y)* shows the amount of information containing in average in one received message with respect to the one transmitted message
- *I*(*X*;*Y*) is also referred to as transinformation (information transmitted through the channel)

Just to recall:

$$H(X) = -\sum_{k=1}^{n} p\{x_{k}\} \log p\{x_{k}\} \qquad H(Y) = -\sum_{j=1}^{m} p\{y_{j}\} \log p\{y_{j}\}$$

$$H(X|Y) = -\sum_{j=1}^{m} \sum_{k=1}^{n} p\{y_{j}\} p\{x_{k}|y_{j}\} \log p\{x_{k}|y_{j}\}$$

$$H(Y|X) = -\sum_{k=1}^{n} \sum_{j=1}^{m} p\{x_{k}\} p\{y_{j}|x_{k}\} \log p\{y_{j}|x_{k}\}$$

$$I(X;Y) = \sum_{j} \sum_{i} p\{x_{i}, y_{j}\} \left(\log p\{x_{i} \mid y_{j}\} - \log p\{x_{i}\}\right) =$$

$$= \sum_{j} \sum_{i} p\{x_{i}, y_{j}\} \log p\{x_{i} \mid y_{j}\} - \sum_{i} \sum_{j} p\{x_{i}, y_{j}\} \log p\{x_{i}\}$$

$$\xrightarrow{P\{y_{j}\} P\{x_{k} \mid y_{j}\}} \xrightarrow{P\{x_{i}\}}$$

$$\xrightarrow{H(X|Y)}$$

• It follows from the equations from the previous slide that:

slide that:

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$I(X;Y) = H(X) - H(X|Y)$$

$$I(X;Y) = H(Y) - H(Y|X)$$

- H(X|Y) shows an average loss of information for a transmitted message with respect to the received one
- H(Y|X) shows a loss of information for a received message with respect to the transmitted one

$$H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)$$

For a noise-free channel,
 I(X;Y)=H(X)=H(Y)=H(X,Y), which means that the information transmitted through this channel does not depend on what was sent/received. It is always completely predetermined by the transmitted content.

• For a channel with independent input/output, I(X;Y)=H(X)-H(X|Y)=H(X)-H(X)-H(X)=0, which means that no information is transmitted through this channel.

Channel Capacity

 The channel capacity (bits per symbol) is the maximum of transinformation with respect to all possible sets of probabilities that could be assigned to the source alphabet (C. Shannon):

$$C = \max I(X;Y) = \max [H(X) - H(X|Y)] =$$
$$= \max [H(Y) - H(Y|X)]$$

 The channel capacity determines the upper bound of the information that can be transmitted through the channel

Rate of Transmission of Information through the Channel

• If all the transmitted symbols have a common duration of *t* seconds then the rate of transmission of information through the channel (bits per second or capacity per second) is

$$C_t = \frac{1}{t}C$$

Absolute Redundancy

 Absolute redundancy of the communication system is the difference between the maximum amount of information, which can be transmitted through the channel and its actual amount:

$$R_a = C - I(X;Y)$$

Relative Redundancy

 Relative redundancy of the communication system is the ratio of absolute redundancy to channel capacity:

$$R_r = \frac{R_a}{C} = \frac{C - I(X;Y)}{C} = 1 - \frac{I(X;Y)}{C}$$